Водородные перспективы

На использование водорода в Европе возлагают большие надежды, насколько они оправданы - вопрос открытый


Мнение


В свое время в интервью директор института возобновляемой энергетики, член-корреспондент НАН Украины Степан Кудря на вопрос корреспондента, сколько сейчас стоят водородные и иные системы, ответил: "$3000 в комплексе. И таким образом мы решаем проблему энергетики и экологии на 100%". Так ли это? Все ли учтено?

Георгий ГАВРИЛЕНКО, энергетик

Под проблемами энергетики в целом понимается обеспечение населения и промышленности теплом, электричеством при их должном качестве, бесперебойной поставке, минимальном влиянии на экологию и при разумных ценах. Насколько водородные технологии отвечают перечисленным требованиям и что требуется для их внедрения в нынешних условиях Украины и пойдет речь.

Основные физические свойства водорода, определяющие его производство и потребление

1. Теплотворная способность водорода - 120.9 КДж/кг (10840 КДж/м3), природного газа в среднем — 37300 КДж/м3.

2. Плотность водорода 0.0897 кг/м3, природного газа в среднем — 0.765 кг/м3.

3. Взрывоопасная концентрация водорода в смеси с воздухом сохраняется в интервале от 4% до 75%, природного газа — в среднем от 4.4% до 17%.

4. Водород обладает повышенной текучестью.

5. При горении водорода в кислороде образуется только водяной пар.

6. При горении водорода в воздухе, кроме водяного пара, образуются оксиды азота NOX, которые относятся к парниковым газам и их выбросы лимитируются.

7. Хранение водорода осуществляется в герметичных емкостях при избыточном давлении или в сосудах Дюара в жидком состоянии.

Способы получения водорода и затраты на его производство

Основными промышленными способами производства водорода являются конверсия кокса или метана и электролиз воды. Водород, получаемый при конверсии, имеет неудовлетворительное качество, поскольку содержит примеси углерода, серы и иных элементов, которые при сгорании приводят к образованию парниковых газов.

Кроме того, при использовании конверсионного водорода в топливных элементах примеси приводят к их деградации (отравлению). Для использования конверсионного водорода в топливных элементах требуется его дополнительная очистка.

При методе электролиза водород производят из дистиллированной воды в электролизерах. Электролизный водород после осушки отвечает требованиям для использования в топливных элементах. Качество электролизного водорода зависит от качества дистиллированной воды и используемых реагентов.

Теоретически для получения 1 м3 водорода посредством электролиза требуется 3.56 кВтч электроэнергии.

Согласно "Нормам технологического проектирования производства водорода методом электролиза воды" НТП 24-94, принятым у наших партнеров из Российской Федерации для получения 1 м3 водорода требуется 4.94-5.76 кВтч электроэнергии и 0.8 м3 дистиллированной воды.

При этом, чем больше мощность электролизера, тем больше потребность в электроэнергии. Это объясняется возрастанием потерь в связи с увеличением расходов на охлаждение, осушку и очистку.

Таким образом, для производства 1 м3 водорода используется 20 736 кДж электроэнергии, которые превращаются в 10 840 кДж химической энергии в виде теплотворности 1 м3 водорода.

Отсюда следует, что коэффициент полезного действия при производстве водорода электролизным способом составляет 52.3%.

Большую часть стоимости в производстве водорода электролизным способом составляют расходы электроэнергии, которые являются энергозатратной частью.

Согласно законопроекту Украины о "зеленом" тарифе (№36580), тариф на электроэнергию в Украине, выработанную на солнечных и ветровых электростанциях, до 31.12.24 г. не может быть дороже 9 евроцентов за 1 кВтч (2.97 грн), а с 1.01.25 г. не может быть дороже 8 евроцентов за один кВтч (2.64 грн). Эти цены согласно законопроекту будут действовать до 2030 г.

Если исходить из того, что для производства водорода будет использоваться электроэнергия возобновляемых источников, то энергозатратная часть стоимости водорода составит 15.2 грн/м3 (без НДС). Для сравнения, в настоящее время отпускная цена природного газа составляет около 7 грн/м3.

Это только энергозатратная часть стоимости водорода. Полная стоимость включает стоимость химобессоленной воды, амортизационные отчисления, транспортировку, эксплуатационные затраты (стоимость реагентов, зарплата, запасные части, ремонт, техническое обслуживание и пр.) и станет как минимум в два раза дороже, то есть может достигнуть 30 грн/м3.

Хранение и транспортировка водорода

Водород как энергоноситель, равно как и электрический ток, и природный газ, обладает общим недостатком — его производство и потребление должны быть сбалансированы. В электроэнергетике это требование обеспечивается регулированием энергосети, снижением или увеличением электрогенерации и наличием резерва, который вводится в работу по необходимости.

Что касается природного газа, то в состав ГТС входят подземные хранилища газа, которые играют роль компенсаторов. При снижении потребления, часть газа из газотранспортной системы может направляться в газохранилища, при возрастании потребления газ отбирается из газохранилищ.

В свою очередь, что касается водорода, то в связи с его повышенной текучестью, хранение в подземных газохранилищах проблематично. Аккумулирующим способом хранения водорода является хранение в сжиженном состоянии. Технология сжижения водорода аналогична технологии сжижения метана, который составляет основу природного газа. Практика сжижения природного газа показывает, что стоимость сжиженного газа в перерасчете на 1 м3 повышает его стоимость на 25%. Таким образом, энергозатратная часть стоимости водорода повышается с 15.2 грн/м3 до 19 грн/м3 (без учета НДС).

Транспортировка сжиженного водорода может осуществляться только специальным транспортом, оборудованным сосудами Дюара, но при этом потеря водорода в сутки составляет около 1% от его массы, что ведет к его удорожанию. Транспортировка сжиженного водорода по трубопроводам в связи с особенностями его физических свойств невозможна.

Согласно некоторым публикациям, предполагается использование действующей газотранспортной системы (ГТС) для транспортировки водорода посредством подмешивания его в природный газ. Предполагается, что оптимальное содержание водорода в такой смеси составит 20%.

Смешивание приведет к тому, что, во-первых, плотность смеси уменьшается до 0.63кг/м3, а во-вторых, теплотворность смеси снижается до 32 000 кДж/м3. За счет подмешивания более дорогого компонента стоимость 1 м3 газовой смеси возрастет по сравнению со стоимостью природного газа с 7 грн/м3 до 9.4 грн/м3.

Кроме того, снижение калорийности газовой смеси потребует увеличения ее расхода на 16%, что приведет к дополнительным расходам энергии на транспортировку и удорожанию.

Украинскому потребителю придется оплачивать каждый кубический метр смеси на 34% дороже по сравнению со стоимостью природного газа. Это добавка к стоимости только за счет энергозатратной части, а фактически стоимость смеси будет гораздо выше.

Что касается технической стороны транспортировки, то снижение плотности газовой смеси скажется на работе компрессорных установок ГТС. Допустимо ли снижение плотности — ответ за специалистами.

Самый сложный технический вопрос использования смеси — текучесть водорода. Дело даже не столь в герметичности сварных и разъемных соединений, как в том, что в составе ГТС, в газовых потребительских сетях используются запорная арматуры и счетчики. Запорная арматура изготовлена согласно соответствующему стандарту для природного газа и допускает протечки (абсолютно плотной арматуры не бывает). Допустимая герметичность арматуры для природного газа не может соответствовать требованиям по герметичности для водорода. Потребуется модернизация ГТС, потребительских сетей с заменой запорной и предохранительной арматуры, что скажется на удорожании газовой смеси.

С изменением плотности газовой смеси потребуется замена счетчиков или их модернизация у всех потребителей, включая население. С использованием водорода возрастают требования по пожарной и взрывобезопасности.

В настоящее время в СМИ достаточно часто появляются сообщения о взрывах газа в жилых домах. Наличие водорода в газовой смеси потребует дополнительного оснащения промышленных зданий, сооружений, жилых строений, в которых будет использоваться газовая смесь, специальной аппаратурой контроля и сигнализации, модернизации систем вентиляции с целью увеличения кратности воздухообмена.

Основное назначение украинской действующей ГТС сейчас состоит в транспортировке природного газа из РФ в ЕС. Украинская сторона связана обязательствами по объему и качеству перекачиваемого природного газа. В случае использования ГТС для перекачивания водорода возможны два сценария.

РФ после ввода в эксплуатацию газопровода "Северный поток-2" (СП-2) откажется от услуг украинской ГТС, а перекачивание водорода украинского производства станет нерентабельным из-за его недостаточного количества и невозможным по техническим причинам.

Кроме того, имеется заявление главы Оператора ГТС Украины Сергея Макогона от 6.03.21 г., в котором сказано, что после ввода в работу "СП-2", ГТС Украины будет модернизирована под внутренние потребности. С. Макогон ни словом не обмолвился о транспортировке водорода с использованием ГТС, и понятно почему.

Подмешивание водорода потребует стабильного поддержания параметров газовой смеси в трубопроводах, что технически трудноосуществимо.

Второй сценарий — РФ не согласует подмешивание водорода украинского производства в природный газ, подаваемый из РФ в ЕС, поскольку РФ несет ответственность за качество поставляемого природного газа, а добавление водорода в природный газ уменьшает теплотворную способность смеси по сравнению с чистым природным газом. Кроме того, РФ может не согласиться с подмешиванием водорода по политическим мотивам, что, скорее всего, и случится.

Второй способ хранения водорода - в емкостях под давлением. Этот способ позволяет хранить ограниченное количество продукта. Например, полная емкость стандартного пропанового баллона составляет 0.065 м3. Вес пропана в баллоне - 21.2 кг. Давление в баллоне равно 1.6 Мпа. Полный вес заправленного баллона — 43.2 кг.

Теплотворная способность пропана - 48 МДж/кг. Энергоемкость одного стандартного баллона, заполненного пропаном, равна 1017.6 МДж. Если пропановый баллон заполнить водородом при давлении 150 кгс/см2, то в баллон вмещается 0.8 кг водорода. Энергоемкость пропанового баллона, заполненного водородом, равна 97 МДж, то есть в 10 раз меньше энергоемкости баллона, заполненного пропаном.

Использование водорода

Практика использования водорода как энергоносителя обширна и представляет собой в основном две формы: генерацию тепловой энергии при его сгорании в атмосфере кислорода или воздуха во всякого рода устройствах и генерацию электрической энергии в топливных элементах.

Кроме того, водород может использоваться в металлургическом производстве и других отраслях экономики. Вызывает интерес использование водорода в топливных элементах, как перспектива, по заявлению сторонников "зеленой" энергетики, перевода транспорта на водородное топливо взамен углеводородного.

Топливный элемент представляет собой электрохимическое устройство, подобное гальваническому элементу (аккумулятору), но отличается от аккумулятора тем, что для электрохимической реакции в него подаются вещества из вне. Другими словами, в комплекте с топливными элементами должны быть баллоны с водородом.

Для получения электроэнергии от топливного элемента в него необходимо постоянно подавать водород и воздух (кислород) с определенным расходом при определенных параметрах от внешних источников.

Коэффициент полезного действия водородного топливного элемента согласно разным источникам составляет около 60%. Если водород генерируется в электролизерах, то как уже было сказано выше, коэффициент полезного действия электролизера составляет около 57%, а с учетом коэффициента полезного действия топливного элемента потребитель получает энергию с общим коэффициентом полезного действия 34.2%. Потери электроэнергии при генерации водорода и потери при обратном превращении водорода в электроэнергию оплачивает потребитель.

Основная проблема использования водорода в топливных элементах состоит в организации хранения его запаса. Предположим, что объем топливного бака автомобиля равен 40 л, в котором помещается 30 кг бензина. Энергоемкость бака с бензином составляет 1308 МДж из расчета, что теплотворность бензина равна 43.6 МДж/кг.

Коэффициент полезного действия бензинового двигателя внутреннего сгорания составляет в среднем 24%. Это значит, что в полезную работу превращается 314 МДж. Стоимость заправки бака бензином объемом 40 л по нынешним ценам составляет около 1100 грн.

Представим, что этот же автомобиль оборудован водородными топливными элементами. Поскольку коэффициент полезного действия топливного элемента равен 60%, то запас водорода должен составлять 313:0.6 = 523 МДж. Исходя из того, что теплотворность водорода равна 120.9 МДж/кг, то количество водорода в баке должно быть не менее 523:120.9 = 4.33 кг. Если хранить водород в баке при давлении 200 кгс/см2, то емкость бака должна быть не менее 0.26 м3, что эквивалентно 4 стандартным пропановым баллонам емкостью 0.065 м3 каждый.

Стоимость заправки 4 баллонов водородом в сумме 4.33 кг составит около 926 грн. Это только энергозатратная часть стоимости водорода, а с учетом остальных составляющих стоимость возрастет минимум в два раза, что станет значительно дороже заправки бензином.

С повышением давления толщина стенок баллона увеличивается, по оценочным расчетам вес одного баллона объемом 0.065 м3, рассчитанного на давление 200 кгс/см2, будет не менее 40 кг.

Суммарный вес баллонов с водородом составит не менее 160 кг плюс вес установки топливных элементов. Согласно публикациям СМИ, модульная установка водородных топливных элементов фирмы "Тойота" мощностью 60-80 кВт весит 240 кг, что сравнимо с весом аккумуляторных батарей электромобиля.

Однако автомобиль с аккумуляторными батареями значительно безопасней автомобиля с топливными водородными элементами, и соответственно дешевле.

Кроме того, топливные элементы по своим свойствам лимитированы по скорости изменения мощности, то есть не допускают форсажа. Это обстоятельство требует установки на автомобиль с топливными элементами аккумуляторных батарей для работы в пиковых режимах.

Возникает вопрос — не проще ли использовать транспортные средства с электрическими накопителями энергии?

Другим основным направлением использования водорода является сжигание с целью получения тепловой энергии в быту, в коммунальных системах отопления, в технологических процессах производства с использованием тепловой энергии. В данном случае проблемы состоят не в использовании, а в транспортировке, о чем было сказано выше.

Кроме того, при сжигании водорода, в связи с более высокими температурами горения по сравнению с природным газом, образуются оксиды азота (NОX) в большем количестве, чем при сжигании природного газа, жидкого или твердого топлива. Оксиды азота относятся к парниковым газам, выбросы которых ограничиваются.

Использование водорода в автомобилях с двигателями внутреннего сгорания не перспективно в связи с тем, что эра двигателей внутреннего сгорания заканчивается. В некоторых европейских странах уже принято решение о прекращении через определенное время производства автомобилей с двигателями внутреннего сгорания.

И напоследок

Использование водородных технологий на основе применения "зеленого" водорода в Украине в искусственно созданных условиях экономически невыгодно и может быть чревато экономическими и политическими последствиями (как случилось с ВИЭ) в связи с тем, что, во-первых, стоимость "зеленого" водорода слишком высока. Продукция, произведенная с использованием "зеленого" водорода, поставит экономику Украины в разряд неконкурентных. Ключ к коммерческой реализации водородной энергетики определяется стоимостью электроэнергии для производства "зеленого" водорода. Стоимость электроэнергии ВИЭ в Украине до 2030 г. не позволяет что-либо предпринимать в коммерческом внедрении водородных технологий. Именно в связи с высокой стоимостью водорода известный мировой авторитет в области инноваций и инвестиций Илон Маск относительно водородных технологий неоднократно высказывался отрицательно, говоря, что это "тупиковая", "умопомрачительная" идея.

Во-вторых, снижение калорийности газовой смеси в связи с подмешиванием водорода потребует увеличения расходов и возможно модернизации устройств генерации тепловой энергии, пропускной способности устройств транспортировки.

В-третьих, повышенная текучесть водорода потребует замены запорной и предохранительной арматуры на системах газоснабжения.

В-четвертых, снижение плотности газовой смеси в связи с подмешиванием водорода потребует замены или модернизации счетчиков у промышленных и бытовых потребителей.

В-пятых, более широкий интервал взрывоопасности водорода по сравнению с природным газом потребует принятия дополнительных мер по взрывобезопасности, включая оснащение приборами контроля утечек, а также модернизации систем вентиляции.

В-шестых, основным источником выбросов парниковых газов в Украине не является энергетика. В настоящее время более половины электроэнергии вырабатывается на установках без выбросов парниковых газов (АЭС, ГЭС, ВЭС, СЭС). Выбросы СО2 при тепловой генерации в 55 млрд кВтч в год не превышают 50 млн т, в то время как общий объем выбросов СО2 в Украине оценивается в 170 млн т в год.

В-седьмых, придется решать с РФ конфликтную проблему изменения свойств перекачиваемой среды в ГТС.

Итого резюмируем, что вышеизложенные задачи относят водородную энергетику в разряд высоких и ответственных технологий. Для их решения потребуется разработка и применение отраслевых стандартов, нормативных актов, регламентирующих эту деятельность. Последствия некорректных решений для экономики, бюджета и населения Украины могут стать разорительнее в разы по сравнению с ситуацией в результате принятых законов по "зеленым" тарифам.

Досье "ЭнергоБизнеса"

Георгий ГАВРИЛЕНКО, энергетик

Родился: 2 июня 1940 г. в Одессе.

Образование: Одесский технологический институт им. М.В. Ломоносова, 1964-1969 гг. Теплофизический факультет. Инженер-теплоэнергетик, специальность — атомные энергетические установки.

Опыт работы: 1973-1974 гг. "Атомэнергоэкспорт", работа на АЭС "Норд" в ГДР. Специалист по обращению с жидкими радиоактивными отходами. Оказание технической поддержки специалистам заказчика на этапе ввода и эксплуатации блока №1; 1976-1980 гг. — "Атомэнергоэкспорт", работа на АЭС "Ловииза" в Финляндии. Руководитель пусконаладочной бригады по наладке систем и оборудования ядерного острова. Ввод в эксплуатацию блоков №№1,2 АЭС "Ловииза" в Финляндии; 1980-1982 гг. — Нововоронежская АЭС, дежурный мастер реакторного цеха. Старший инженер-оператор, начальник смены блока, начальник смены АЭС, участие в пусках блоков №№3,4,5; 1982-2003 гг. — Запорожская АЭС. Начальник производственно-технического отдела, главный инженер пусконаладочного подразделения по вводу в эксплуатацию блоков №№1-6, пуск 6-ти блоков ЗАЭС. Начальник лаборатории надежности; 2003-2008 гг. — "Атомтехэнерго", "Росатом". Руководитель пусконаладочной организации (SUT — start-up team) на площадке АЭС "Тяньвань" в Китае. Руководство работами по вводу блоков №№1, 2 в эксплуатацию, организация разработки предложений по устранению выявленных несоответствий; 2008-2014 гг. ЗАО "Атомстройэкспорт". "Росатом". Главный инженер Управления строительства на площадке АЭС "Кудамкулам" в Индии. Оказание технической помощи заказчику в сооружении и вводе в эксплуатации блоков №№1,2; с 2014 г. — пенсионер.

Copyright © ЦОИ «Энергобизнес», 1997-2024. Все права защищены
расширенный поиск
Close

← Выберите раздел издания

Искать варианты слов
 dt    dt